Kinematics II \& Dynamics
Kinematics II

Graph	Slope	Area Under Curve
Position vs. Time	Velocity	
Velocity vs. Time	Acceleration	Displacement
Acceleration vs. Time		Change in Velocity

Things to remember:
B Positive v implies forward motion. Negative v implies backward motion.
B If $v=0$, the object has stopped.
ß Positive a means velocity is increasing. Negative a means velocity is decreasing.
B If $a=0$, the object is moving at constant velocity.

Exercise \#1:

- How far does the object travel from $t=0$ to $t=5$?
A. 4 m
B. 5 m
C. 6 m
D. 8 m
- Which of the following statements is (are) true?
I. At $=5$, the object had returned to its original position.
II. The object's average speed between $t=0$ and $t=1$ was greater than its average speed between $t=1$ and $t=5$.
III. The object changed its direction of travel at $\mathrm{t}=1$.
A. I and II only
B. I and III only
C. II and III only
D. None of the above

Final Look at Projectile Motion:

	Horizontal Motion	Vertical Motion
Displacement	$x=v_{o, x} t$	$y=v_{o, y} t-\frac{1}{2} g t^{2}$
Velocity	$v_{x}=v_{o, x}$ (constant)	$v_{y}=v_{o, y}-g t$
Acceleration	$a_{x}=0$ (zero acceleration case)	$a_{y}=-g$ (constant acceleration)

Note that the convention is that up = positive. The convention can also be down $=$ negative but then $a_{y}=+g$

Intro to Dynamics

B Basics

- Dynamics is the study of forces. We NOW care about MASS.
- A force is a push or pull exerted by one object on another. It is a vector.
- Newton is the SI unit for force.
- There are really two types of (commonly used) forces:

B Gravitational Force
B Electromagnetic Force

- normal force (force due to surface)
- friction (force due to motion along surface or within fluid)
- tension (force along wire/rope)
ß Newton's laws
- (First law) If there is no net force acting on an object, then:

B An object at rest will stay at rest
B An object in motion will move at constant velocity (constant speed in straight line)

- (Second law) $F_{\text {net }}=m a$

B $F_{\text {net }}$ includes all forces acting on object.
B Acceleration always in direction of force, but velocity is not always in the same direction as force.
B Zero net force always implies zero acceleration, which implies constant velocity.

- (Third law) Contact forces are equal and opposite.

Example:

[Let's draw free body diagram]
ß Is there a force acting on the 5 kg block?
B What is the net force on the 20 kg block?
B What is the acceleration on each block?

B What is the force on each block?

Which of Newton's laws does this example best illustrate?

Exercise \#2:

A hockey puck slides on a surface of frictionless ice. If the mass of the puck is 250 g , and it moves in a straight line with a constant velocity of $4 \mathrm{~m} / \mathrm{s}$, find the net force acting on the puck?
A. 0 N
B. 1 N
C. 62.5 N
D. 1000 N

Exercise \#3:

An object is being acted upon by two (and only two) external forces F_{1} and F_{2}. If the object has a nonzero acceleration, which of the following must be true?
A. The object cannot move at constant speed.
B. The forces F_{1} and F_{2} have the same line of action.
C. The magnitude of F_{1} can't equal the magnitude of F_{2}.
D. The sum F_{1} and F_{2} is nonzero.
ß Weight and mass (again)

- Mass is a scalar and measures an object's resistance to acceleration (inertia): $m=F / a$
- Weight is a force (hence, a vector) and represents the pull on an object by Earth's gravity:

$$
W=m g
$$

- Weight and mass are directly proportional, but remember that they have different units. Weight (a force) is measured in Newtons. Mass is measured in kg.
- $g=10 \mathrm{~m} / \mathrm{s}^{2}$
- The MCAT will always try to trick you on the difference between mass and weight. They sometimes will tell you an object weighs 50 N or they may tell you that an object has a mass of 50 kg . These are NOT the same!!

B An object that weighs 50 N has a mass of 5 kg .
B An object with a mass of 50 kg weighs 500 N .
B Newton's law of gravitation

$$
F_{g r a v i t y}=\frac{G m_{1} m_{2}}{R^{2}}
$$

$R=$ straight line distance between mass 1 and mass 2
$G=$ gravitational constant, but what are the units?
is What's important about gravitational force?

- Inversely proportional to the square of distance
(If two objects are twice as far from each other, their gravitational force is $1 / 4$ less)
- Always attractive, in that masses always move towards each other
- Forces come in pairs (equal and opposite) even if there is no contact!

Exercise \#4:
Find the force that must be provided to lift a 49 N object with an acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$?
(Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
A. 9.8 N
B. 49 N
C. 98 N
D. 147 N

Exercise \#5:

An object has a mass of 36 kg and weighs 360 N at the surface of the Earth. If this object is transported to an altitude equal to twice the Earth's radius, then at this new elevated position the object will have:
A. Mass $=4 \mathrm{~kg} ; \mathrm{W}=40 \mathrm{~N}$
B. Mass $=36 \mathrm{~kg} ; \mathrm{W}=40 \mathrm{~N}$
C. Mass $=9 \mathrm{~kg} ; \mathrm{W}=90 \mathrm{~N}$
D. Mass $=36 \mathrm{~kg} ; \mathrm{W}=90 \mathrm{~N}$

B Friction and passive forces

- Passive forces only react to forces, and act in a direction opposite to an applied force. They never exceed the magnitude of the applied force.
- Examples of passive force include:

B Friction
B Normal force
What's the normal force? (Assume the maximum strength of table is 1 MN)

What's the direction of normal force? ALWAYS PERPENDICULAR

- Friction depends on normal force and always retards motion:

$$
f=\mu N
$$

- Friction also depends on a constant called the coefficient of friction, which depends of the characteristics of the surface (cement as opposed to ice). There are two types:

B coefficient of static friction (used when object begins at rest or is rolling) $=\mu_{s}$
ß coefficient of kinetic friction (used when object in motion is skidding) $=\mu_{k}$

- The coefficient of static friction is always bigger than the coefficient of kinetic friction, because it's always harder to start something in motion than to keep something in motion.

Example: All objects begin at rest and have a mass of 10 kg . The coefficient of static friction $\left(\mu_{s}\right)$ is 0.3 and the coefficient of kinetic friction $\left(\mu_{k}\right)$ is 0.2 .

Find the frictional force in each case:

What is the maximum the frictional force can ever be?

Exercise \#6:
A person applies a horizontal force F on a block of mass m resting against a vertical wall. If the block slides down the wall at constant speed, what must be true about the coefficient of kinetic friction μ between the block and the wall?
A. $\mu=\frac{m g}{F}$
B. $\mu=\frac{F}{m g}$
C. $\mu=1$
D. $\mu=g$
ß Inclined planes

- Note that the incline angle is equal to the angle between weight ($W=m g$) and the normal line (to the inclined surface).
- The normal force is always equal to $N=m g \cos \theta$.
- In the absence of friction, the acceleration of a block down an incline is $a=g \sin \theta$. When the incline angle is zero (which means surface is perfectly horizontal), note that the acceleration is g, just a gravitational acceleration straight down.
- Friction always opposed motion. So what would the free body diagram look like if the inclined surface had friction?

ß Pulleys
- A pulley changes the direction of tension (force exerted by stretched string or cord).
- Pulleys are often used to decrease the force needed to lift an object.

B Free-body diagrams are really important in solving dynamics problems. Always do them!
Example: Find the acceleration experienced by both blocks. (Ans. 1 and $24 \mathrm{~m} / \mathrm{s}^{2}$)

$\mu_{\mathrm{s}}=0.5, \mu_{\mathrm{k}}=0.4$

